Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Arrhythm Electrophysiol ; 16(9): e011870, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37646176

RESUMO

BACKGROUND: Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS: Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS: Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS: KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.


Assuntos
Fibrilação Atrial , Canais KATP , Humanos , Animais , Camundongos , Canais KATP/genética , Fibrilação Atrial/genética , Tolbutamida , Taquicardia , Átrios do Coração , Hipóxia/complicações , Hipóxia/genética , Trifosfato de Adenosina
2.
Hypertension ; 76(3): 776-784, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32654556

RESUMO

In the endothelium, ATP-sensitive potassium (KATP) channels are thought to couple cellular metabolism with membrane excitability, calcium entry, and endothelial mediator release. We hypothesized that endothelial KATP channels have a broad role protecting against high blood pressure and atherosclerosis. Endothelial-specific Kir6.1 KO mice (eKO) and eKO mice on an apolipoprotein E KO background were generated (A-eKO) to investigate the role of KATP channels in the endothelium. Basal blood pressure was not elevated in eKO mice. However, when challenged with a high-salt diet and the eNOS inhibitor L-NAME, eKO mice became more hypertensive than their littermate controls. In aorta, NO release at least partly contributes to the endothelium-dependent vasorelaxation induced by pinacidil. In A-eKO mice atherosclerotic plaque density was significantly greater than in their littermate controls when challenged with a high-fat diet, particularly in the aortic arch region. Levels of endothelial dysfunction markers were higher in eKO compared with WT mice; however, these were not significant for A-eKO mice compared with their littermate controls. Furthermore, decreased vascular reactivity was observed in the mesenteric arteries of A-eKO mice, but not in aorta when on a high-fat diet. Our data support a role for endothelial Kir6.1-containing KATP channels in the endothelial protection against environmental stressors: the maintenance of blood pressure homeostasis in response to high salt and endothelial integrity when challenged with a high-fat diet.


Assuntos
Aterosclerose , Células Endoteliais , Hipertensão , Canais KATP/metabolismo , Óxido Nítrico Sintase Tipo III , Pinacidil/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Inibidores Enzimáticos/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/metabolismo , Resultado do Tratamento , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
3.
J Biol Chem ; 293(23): 8912-8921, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666184

RESUMO

ATP-sensitive potassium channels (KATP) contribute to membrane currents in many tissues, are responsive to intracellular metabolism, and open as ATP falls and ADP rises. KATP channels are widely distributed in tissues and are prominently expressed in the heart. They have generally been observed in ventricular tissue, but they are also expressed in the atria and conduction tissues. In this study, we focused on the contribution and role of the inwardly rectifying KATP channel subunit, Kir6.1, in the sinoatrial node (SAN). To develop a murine, conduction-specific Kir6.1 KO model, we selectively deleted Kir6.1 in the conduction system in adult mice (cKO). Electrophysiological data in single SAN cells indicated that Kir6.1 underlies a KATP current in a significant proportion of cells and influences early repolarization during pacemaking, resulting in prolonged cycle length. Implanted telemetry probes to measure heart rate and electrocardiographic characteristics revealed that the cKO mice have a slow heart rate, with episodes of sinus arrest in some mice. The PR interval (time between the onset of the P wave to the beginning of QRS complex) was increased, suggesting effects on the atrioventricular node. Ex vivo studies of whole heart or dissected heart regions disclosed impaired adaptive responses of the SAN to hypoxia, and this may have had long-term pathological consequences in the cKO mice. In conclusion, Kir6.1-containing KATP channels in the SAN have a role in excitability, heart rate control, and the electrophysiological adaptation of the SAN to hypoxia.


Assuntos
Frequência Cardíaca , Canais KATP/metabolismo , Potássio/metabolismo , Nó Sinoatrial/metabolismo , Aclimatação , Potenciais de Ação , Animais , Células Cultivadas , Deleção de Genes , Hipóxia/metabolismo , Canais KATP/genética , Camundongos , Camundongos Knockout
4.
J Biol Chem ; 292(43): 17587-17597, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893911

RESUMO

ATP-sensitive potassium (KATP) channels are widely expressed in the cardiovascular system, where they regulate a range of biological activities by linking cellular metabolism with membrane excitability. KATP channels in vascular smooth muscle have a well-defined role in regulating vascular tone. KATP channels are also thought to be expressed in vascular endothelial cells, but their presence and function in this context are less clear. As a result, we aimed to investigate the molecular composition and physiological role of endothelial KATP channels. We first generated mice with an endothelial specific deletion of the channel subunit Kir6.1 (eKO) using cre-loxP technology. Data from qRT-PCR, patch clamp, ex vivo coronary perfusion Langendorff heart experiments, and endothelial cell Ca2+ imaging comparing eKO and wild-type mice show that Kir6.1-containing KATP channels are indeed present in vascular endothelium. An increase in intracellular [Ca2+], which is central to changes in endothelial function such as mediator release, at least partly contributes to the endothelium-dependent vasorelaxation induced by the KATP channel opener pinacidil. The absence of Kir6.1 did not elevate basal coronary perfusion pressure in eKO mice. However, vasorelaxation was impaired during hypoxia in the coronary circulation, and this resulted in greater cardiac injury during ischemia-reperfusion. The response to adenosine receptor stimulation was impaired in eKO mice in single cells in patch clamp recordings and in the intact coronary circulation. Our data support the existence of an endothelial KATP channel that contains Kir6.1, is involved in vascular reactivity in the coronary circulation, and has a protective role in ischemia reperfusion.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Circulação Coronária , Endotélio Vascular/metabolismo , Canais KATP/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Vasodilatação , Animais , Endotélio Vascular/fisiopatologia , Canais KATP/genética , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...